Nu*Ace is developed with the basic understanding of the composting process and plays a big role in providing the right habitat for the five primary variables that must be “controlled” during composting.
Soil is the mixture of minerals, organic matter, gases, liquids and a myriad of organisms that can support plant life. It is a natural body that exists as part of the pedosphere and it performs four important functions: it is a medium for plant growth; it is a means of water storage, supply and purification; it is a modifier of the atmosphere; and it is a habitat for organisms that take part in decomposition and creation of a habitat for other organisms.
- Feedstock and nutrient balance. Controlled decomposition requires a proper balance of “green” organic materials (e.g., grass clippings, food scraps, manure), which contain large amounts of nitrogen, and “brown” organic materials (e.g., dry leaves, wood chips, branches), which contain large amounts of carbon but little nitrogen. Obtaining the right nutrient mix requires experimentation and patience and is part of the art and science of composting.
- Particle size. Grinding, chipping, and shredding materials increases the surface area on which the microorganism can feed. Smaller particles also produce a more homogeneous compost mixture and improve pile insulation to help maintain optimum temperatures (see below). If the particles are too small, however, they might prevent air from flowing freely through the pile.
- Moisture content. Microorganisms living in a compost pile need an adequate amount of moisture to survive. Water is the key element that helps transports substances within the compost pile and makes the nutrients in organic material accessible to the microbes. Organic material contains some moisture in varying amounts, but moisture also might come in the form of rainfall or intentional watering.
- Oxygen flow. Turning the pile, placing the pile on a series of pipes, or including bulking agents such as wood chips and shredded newspaper all help aerate the pile. Aerating the pile allows decomposition to occur at a faster rate than anaerobic conditions. Care must be taken, however, not to provide too much oxygen, which can dry out the pile and impede the composting process.
- Temperature. Microorganisms require a certain temperature range for optimal activity. Certain temperatures promote rapid composting and destroy pathogens and weed seeds. Microbial activity can raise the temperature of the pile’s core to at least 140° F. If the temperature does not increase, anaerobic conditions (i.e., rotting) occur. Controlling the previous four factors can bring about the proper temperature.
Benefits of Nu Ace compost
- Reduce or eliminate the need for chemical fertilizers.
- Promote higher yields of agricultural crops.
- Facilitate reforestation, wetlands restoration, and habitat revitalization efforts by amending contaminated, compacted, and marginal soils.
- Cost-effectively remediate soils contaminated by hazardous waste.
- Remove solids, oil, grease, and heavy metals from stormwater runoff.
- Avoids Methane and leachate formulation in landfills.
- Reduces the need for water, fertilizers, and pesticides.
Obtaining the right nutrient mix requires experimentation and patience and is part of the art and science of composting Nu Ace is helping in this process.